Steel Buildings in Europe

Part 5: Joint Design 5 – 61 For single notched beam For low shear (i.e. V Ed ≤ 0,5 V pl,N,Rd ) M v,N,Rd = M0 y,b el,N  f W For high shear (i.e. V Ed > 0,5 V pl,N,Rd ) M v,N,Rd =                   2 pl,N,Rd Ed M0 y,b el,N 1 1 2 V V f W  For double notched beam: For low shear (i.e. V Ed ≤ 0,5 V pl,DN,Rd ) M v,DN,Rd =   2 e 1 1 1,b M0 y,b w ) 1 ( 6 e n p h f t     For high shear (i.e. V Ed > 0,5 V pl,DN,Rd ) M v,DN,Rd =                          2 DN,Rd pl, Ed 2 e 1 1 1,b M0 y,b w 1 1 2 1 4 V V e n p h f t  4.2.4.2 For double bolt lines, if x N < 2 d : max ( V Ed ( g h + l n ); V Ed ( g h + e 2,b + p 2 )) ≤ M v,N,Rd [Reference 4] M v,N,Rd = M c,Rd from the previous check where: W el,N is the elastic section modulus of the gross Tee section at the notch V pl,N,Rd is the shear resistance at the notch for single notched beams = M0 v,N y,b 3  f A A v,N = A Tee – bt f + ( t w + 2 r ) 2 f t V pl,DN,Rd is the shear resistance at the notch for double notched beams = M0 y,b v,DN 3  f A A v,DN = t w ( e 1,b + ( n 1 – 1) p 1 + h e ) where: A Tee is the area of the Tee section

RkJQdWJsaXNoZXIy MzE2MDY=