Steel Buildings in Europe

Title A.2 Worked Example – Simply supported beam with intermediate lateral restraints 5 of 7 4 – 68 f,z 1 c c f   i k L  ≤ c0  y,Ed c,Rd M M where: M y,Ed is the maximum design value of the bending moment within the restraint spacing k c is a slenderness correction factor for moment distribution between restraints, see EN 1993-1-1, Table 6.6 i f,z is the radius of gyration of the compression flange including 1/3 of the compressed part of the web area, about the minor axis of the section c0  is the slenderness parameter of the above compression element c0  = 0,10 LT,0   For rolled profiles, 0,40 LT,0   Note: The slenderness limit c0  may be given in the National Annex. 1  = π y f E = 93,9  and 1 235 235 235 y    f  EN 1993-1-1 6.3.2.3 (1) I f,z = [1318 - (2 × 37,3 / 3) × 0,86 3 / 12] / 2 = 658,34 cm 4 A f,z = [84,46 - (2 × 37,3 / 3) × 0,86] / 2 = 31,54 cm 2 i f,z = 31,54 658,34 = 4,57 cm W y = W pl,y = 1307 cm 3 1  = π y f E = 93,9 EN 1993-1-1 6.3.2.3 c0  = 0,40 + 0,10 = 0,50 c,Rd M = W y M1 y  f = 3 10 1,0 235 1307          = 307,15 kNm Combination 1 Note: Between restraints in the centre of the beam, where the moment is a maximum, the moment distribution can be considered as constant. EN 1993-1-1 Table 6.6 k c = 1 L c = 2,50 m f  = 4,57 93,9 1 250   = 0,583

RkJQdWJsaXNoZXIy MzE2MDY=